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Abstract Charge sensitivity analysis (CSA) was extended
to AMBER force-field resolution. The effective electroneg-
ativity and hardness data were found using evolutionary
algorithms. Four model hardness matrices based on the classical
electrostatic, Mataga–Nishimoto, Ohno, and Louwen–Vogt
interpolation formulae were considered. Mulliken population
analysis and electrostatically derived charges (CHELPG) were
taken into account. It was demonstrated that the Ohno
interpolation formula gives the best fit to Mulliken charges.
For all molecules from the training set and all model hardness
matrices, Mulliken charges were reproduced more accurately
than CHELPG charges, indicating their good transferability
from system to system. The effective electronegativities and
hardnesses obtained were further verified by applying CSA to
molecules from a validation set that was different from the
training set. The correlation between CSA and Mulliken
charges was of the same quality as that obtained for the
training set.

Keywords Charge sensitivity analysis . Electronegativity
equalization principle . Charge distribution
Softness/hardness data . AMBER force fields

Introduction

Chemical processes are frequently viewed from the atomic
perspective. Unfortunately, there are various quantum-

chemical definitions of atoms in molecules [1–6]. Some
of these are based on partitioning in Hilbert or physical
space. Mulliken [1], Löwdin [2], and Roby [3] population
analyses are examples of the former, while Bader’s [4] and
Hirshfeld’s [5] approaches are examples of the latter
definition. Charge distributions in molecules can be
obtained by fitting to ab initio electrostatic potentials.
Many procedures were proposed that differ in the grid
assumed and additional constraints [7–9]. Some parameter-
ization procedures take charges from other population
schemes as input and map them to reproduce charge-
dependent observables obtained either from experiment or
from very accurate quantum mechanical calculations on
small molecules [10].

Using certain assumptions, charge distributions can be
derived from experimental measurements. The analysis of
core-level energy shifts from X-ray photoemission spec-
troscopy [11] or nuclear quadrupole coupling constants [12,
13] gives the charge distribution inside subsystems;
however, it should be stressed that atomic charges as well
as those of an interacting subsystem are not physical
observables. The correlation between the charges of
donor/acceptor systems obtained with different population
analyses was investigated by Szewczyk et al. [14].

Another way to derive atomic charges is to use the
electronegativity equalization (EE) principle [15]. The
concept of electronegativity, originally introduced by
Pauling [16], is commonly used to describe charge
polarization within molecules. Electronegativity is rigor-
ously defined within density functional theory (DFT) and is
considered a negative chemical potential. Within the finite
difference approximation, atomic electronegativities [17] are
equivalent to Mulliken electronegativities [18]. Sanderson’s
EE principle [15] is also naturally justified by DFT.

The EE method is based on the second-order Taylor
expansion of the system’s energy with respect to the
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population variables. Its atomic resolution is used to derive the
charge distributions within molecules. One of the first
applications of the EE method for computing atomic charges
was performed byMortier et al. [19, 20]. The EE method was
also incorporated into molecular dynamics packages in
order to derive the starting charge distribution [21, 22].
Recently, there has been growing interest in EE-based
approaches [23–29]. Some of these exhibit trivial-atom
resolution. Other approaches distinguish atoms by hybrid-
ization or by their nearest neighbors. Except for the
CHARMM fluctuating charge force-field for proteins [24],
none of the abovementioned EE-based approaches have been
applied to describe mutually polarized molecules. It was
demonstrated using charge sensitivity analysis (CSA) that
the EE method should also work for polarized reactants [30].

CSA was formulated in the 1990s [31]. This formalism
was considered a supplementary tool to semiempirical
calculations. It was based on the EE principle, but in
contrast to the EE method, it was never parameterized to
derive the charge distributions inside molecules. The main
aim of CSA was to explore reactivity concepts that could
potentially be used in qualitative structure–activity rela-
tionship (QSAR) or qualitative structure–property relation-
ship (QSPR) models. In the present paper we would like to
go beyond the original CSA formulation and parameterize
CSA with force-field-atom resolution. Weiner’s original
AMBER84 force field [32, 33] was taken into account. The
paper is organized as follows. First, the CSA formalism is
described together with four model hardness matrices.
Computational details are then given. Afterwards, the
results obtained are presented. Finally, conclusions and
future prospects are briefly discussed.

Charge sensitivity analysis

CSA at atomic resolution can be summarized as a single
matrix equation [31, 34]:
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where hhh ¼ hij ¼ @2EM = @qi@qj
� �

is the hardness matrix, q
is the total charge and # ¼ @EM=@q is the global
electronegativity of a molecule M composed of N atoms
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manifest the EE principle in atomic resolution
(#1 ¼ #2 ¼ ::: ¼ #N ¼ #). Equation 3 results from the
following second-order Taylor expansion of the system’s
energy with respect to the atomic charges:
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The charge distribution can be obtained by inverting Eq. 1
[31, 34]:
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Here, bbb ¼ bij ¼ @2EM=@vi@vj ¼ �@qj=@vi ¼ �@qi=@vj
� �

is the polarization matrix (the linear response matrix or the
negative internal softnessmatrix) [31]. It fulfills the following
normalization condition:

PN
i¼1 bij ¼

PN
j¼1 bij ¼ 0, since a

perturbation in the external potential (v) at the position of a
given atom cannot change the number of electrons in the
system. The remaining undefined quantities are the
global hardness [35] h ¼ @2EM=@q2 and the Fukui
function (FF) [36] vector f ¼ f1; f2; . . . fNð ÞT. The FF
indices are normalized to unity (

PN
i¼1 fi ¼ 1). Each

component of f represents a response of a given atom to
a perturbation in the total number of electrons in the
system: fi ¼ @qi=@qð Þv ¼ � @m=@við Þq. It should be stressed
that FF describes the global equilibrium when there is no
barrier to charge flows between atoms. Apart from describing
two extreme equilibrium cases (global and constrained), CSA
can be applied to intermediate situations: the division of
molecular systemM into mutually closed subsystems/reactants
(molecule–environment, mutually polarized reactants, active
center and environment, catalyst and its support, etc.).

Hardness matrix

It is obvious from Eq. 1 that in order to derive atomic
charges, the effective electronegativities χ and hardness
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matrix η must be known. In addition, the hardness matrix is
the most important second-order sensitivity. Other sensitiv-
ities (e.g., polarization matrix, softness matrix and FF
vector) are derived from η. Assuming the frozen core
approximation, one can relate the off-diagonal elements of
the hardness matrix to the Coulomb and exchange integrals
between valence shell s-electrons (rotational invariance):

hij � sisijjsjsj
� � ¼ sisijsjsj

� �� 1
2 sisjjsjsi
� �

� Jij � 1
2Kij: ð6Þ

The zero-differential overlap criterion, adopted in semi-
empirical methods, further reduces ηij to the Coulomb
integral Jij. The diagonal elements are approximated by the
finite difference method hii � Ii � Ai: � Jii (the Pariser
formula), where Ii and Ai are the ionization potential and the
electron affinity of atom i. The crudest approximation for
off-diagonal elements,

hij � 1 =Rij; ð7Þ

results from the point-charge formula Eij ¼ Zi � Nið Þ�
Zj � Nj

� �
=Rij ¼ qiqj=Rij that is used in classical molecular

dynamic simulations. Here, Rij is the distance between
atoms i and j, Zi is the nuclear charge and Ni is the electron
population of the ith atom. Such an approximation is
correct in the limit of separated atoms; however, its
behavior in the limit of united atoms is incorrect. A more
realistic model of off-diagonal elements of the hardness
matrix can be obtained from the diagonal integrals via the
combination formulae of semiempirical theories, such as
those of Mataga–Nishimoto (M-N) [37]

hij ¼
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aij þ Rij
; ð8Þ

Ohno [38]
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and Louwen–Vogh (L-V) [39]
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The constants aij and dij depend on diagonal hardness data
and are equal to aij ¼ 2= hii þ hjj
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p
,

respectively. The construction of the hardness matrix only
requires that the diagonal hardnesses are known. These,

together with the effective electronegativities, should be
optimized for each of the atom types.

Methods

The effective electronegativity and diagonal hardness data
for a few selected atoms can be obtained via a systematic
search of the variation space. However, if one additionally
differentiates atoms according to their nearest chemical
neighborhood, the optimization is no longer an easy task. A
systematic search of the variation space is meaningless due
to a huge number of optimization parameters. For this
reason, an evolutionary algorithm (EA) was used to find the
optimal values of the effective electronegativities and
diagonal hardnesses. The GAUL [40] library was used to
perform EA calculations. It was coupled with the CSA
package developed in our group. Calculations were carried
out for a set of 101 small organic molecules. These
molecules are called the training set. The total number of
atoms in this set was 1639. Most of the molecules in the
training set were of biological importance. In particular,
standard amino acids and DNA/RNA bases were included.
All of the molecules in the training set are listed in the
“Electronic supplementary material” (ESM). The structures
of all molecules and the charge distribution data were
calculated at the HF/6-31G(d) level of theory using the
GAMESS package [41].

Evolutionary algorithms mimic the natural concept of
evolution in order to tackle many dimensional optimization
problems. In this approach, the possible solutions are
regarded as specimens of a population. They are character-
ized by a fitness function that describes the extent to which
a given solution is different from the optimal one. For our
needs, it was defined as:

S2 ¼ �
X
i

X
a2i

qHFi;a � qCSAi;a

	 
2
; ð11Þ

where qHF
i ¼ qHFi;a ; a ¼ 1; 2; . . .

n o
and qCSA

i ¼ qCSAi;a ;a
n

¼
1; 2; . . .g denote vectors holding the ith molecule’s
atomic charges calculated with the HF and CSA methods,
respectively. The sum in Eq. 11 is performed across the
training molecules. S2 tends to zero in the ideal case where
qCSAi is identical to qHFi . The function is given a negative
sign to ensure that it is increasing. For trivial and
hybridized atoms, the population employed consisted of
50 entities. When the force-field atoms were introduced, it
was necessary to increase the size of the population to
70 entities due to a large number of optimization
parameters. The genome of each entity was a matrix of
effective electronegativities (#

»
i ) and diagonal hardnesses

(hii � h
»
i ). The specimens in the population evolved in
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two ways: via recombination or mutation. The former
mixed the corresponding allele of two entities’ genomes,
while the latter changed the contents of a single entity’s
genome. Both recombination and mutation could appear at
multiple points in the genomes. The crossover took place
at the beginning of each generation. Selection of the
entities for recombination was conducted as follows: in
each pair, the first entity was chosen to have a small
absolute value of the fitness function while the other was
chosen randomly. Then, all of the entities —parents and
children— were mutated. Full elitism was introduced,
which meant that the entities that survived to the next
generation were the ones with the smallest absolute values
of the fitness function, regardless of whether they were
parents, children or mutants. The evolution scheme
employed in this work corresponded to Darwinian evolu-
tion (i.e., no local optimization was performed on the
entities during the evolution). Depending on the number of
optimization parameters, the evolution lasted for 80
(trivial atoms) or 250 generations (hybridized atoms). In
the case of force-field atoms, the calculations had to be
split. Parameters for atom types of different elements were
optimized in turn. Evolution lasted for 80, 250, 150, 80
and 50 generations for hydrogen, carbon, nitrogen, oxygen
and sulfur atoms, respectively.

Results and discussion

The optimized effective electronegativity (#
»
i ) and hardness

(h
»
i ) data to reproduce Mulliken charges are collected in

Tables 1, 2, 3. We have considered only hydrogen, carbon,
oxygen, nitrogen, and sulfur atoms. Three different atomic
resolutions were taken into account. First, we only
distinguished the elements (Table 1). Next, we additionally
distinguished between hybridizations for each atom (Table 2).
Finally, AMBER force-field-atom types were considered
(Table 3). All of the tables contain four sets of parameters,
each for a different hardness matrix. The reported values are
in eV/e or eV/e2 for electronegativities and hardnesses,
respectively. In the case of electronegativity, we assumed
that #

»
H and #

»
HC (the first row in Tables 1–3) are equal to

10 eV/e. This constant value for one electronegativity

parameter was introduced in order to simplify the
optimization procedure, and has no effect on the atomic
charges obtained. The only consequence of this assumption is
a shift in the reference chemical potential (electronegativity)
level by a constant value. The following matching rule:
# ¼ @EM=@qð Þ ¼ P

i @EM=@qið Þ @qi=@qð Þ ¼ P
i #

»
i fi clearly

demonstrates this effect. By adding a constant value to
each #

»
i ; the global electronegativity is shifted by the

same value, as the FF indices are normalized to 1:P
i #

»
i þ const

� �
fi ¼ # þ const. In order to adjust this

level, it is necessary to either reproduce the system’s
electronic energy or to take into account the known
relation between the first (d1E) and the second (d2E)
differential of the system’s energy for the equilibrium
charge distribution. In the first case, a set of effective
atomic energies E

»
i must be found in order to reproduce the

system energy. In the second case, the following relation
holds: d2E

�� �� ¼ 1
2 d

1E
�� ��.

The data reported in Table 1 qualitatively agree with the
isolated atom electronegativity and hardness sequences. The
order of the effective electronegativities is as follows
#
»
H < #

»
S < #

»
C < #

»
N < #

»
O. This is in agreement with

the Pauling electronegativities. In the Mulliken scale, the
electronegativity of a hydrogen atom is higher than
electronegativity of a carbon atom. The order of the hardness
data (except for the M-N scheme) is: h

»
O > h

»
N > h

»
C > h

»
S.

The value of h
»
H is close to that of h

»
O; and, depending on

the hardness matrix, h
»
H is located either below h

»
O (Ohno and

L-V) or above it (1/R). This is the isolated atom perspective.
The chemical potential difference indicates the direction of
charge transfer (CT). The electrons flow from an atom of
lower electronegativity (higher chemical potential) to an
atom of higher electronegativity (lower chemical potential).
The hardness reflects the resistance of a given atom to
charge transfer. The electronegativity of a closed atom in a
molecule includes the electrostatic correction (see Eq. 3),
which can change the isolated atom picture. For example, it
is well known that carbon atoms bonded to electronegative
atoms can form hydrogen bonds.

In order to compare the optimized parameters with the
values reported in the literature, the effective hardness
should be halved. This is connected with the Taylor
expansion coefficient, which is not included in the hardness

1/R M-N Ohno L-V

h
»
i #

»
i h

»
i #

»
i h

»
i #

»
i h

»
i #

»
i

H 29.94 10.00 12.07 10.00 24.75 10.00 27.37 10.00

C 18.08 14.14 7.522 12.10 13.68 13.40 16.05 13.58

N 28.35 25.04 16.84 18.97 25.15 23.00 23.92 21.54

O 29.14 26.48 28.56 24.32 26.11 23.87 29.60 25.93

S 14.63 12.21 16.26 10.48 11.97 11.77 13.37 11.86

Table 1 The optimized electro-
negativity (#

»
i ) and hardness (h

»
i )

data for trivial-atom resolution
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1/R M-N Ohno L-V

h
»
i #

»
i h

»
i #

»
i h

»
i #

»
i h

»
i #

»
i

H 29.79 10.00 17.66 10.00 23.37 10.00 29.57 10.00

C sp2 17.17 14.17 8.39 13.01 12.59 13.13 15.17 14.16

C sp3 19.31 14.40 10.38 13.56 14.19 13.16 17.00 14.12

N sp2 24.35 21.60 25.02 24.69 20.11 19.40 20.18 19.56

N sp3 28.26 24.85 27.36 27.36 18.16 17.99 22.71 21.15

O sp2 25.29 23.07 28.77 25.55 22.29 20.71 27.03 24.03

O sp3 23.26 22.26 29.17 28.00 28.72 25.08 29.34 26.62

S 14.21 12.05 9.65 11.44 11.11 11.66 23.63 10.97

Table 2 The optimized electro-
negativity (#

»
i ) and hardness (h

»
i )

data for hybridized-atom
resolution

1/R M-N Ohno L-V

h
»
i #

»
i h

»
i #

»
i h

»
i #

»
i h #

»
i

HC 30.09 10.00 18.52 10.00 23.34 10.00 29.40 10.00

H 32.38 9.09 15.98 9.95 28.38 8.31 31.15 9.69

HO 31.63 9.93 18.98 9.29 25.26 9.02 32.59 8.35

HS 32.41 9.07 23.44 9.16 19.59 10.20 26.83 8.73

H2 34.71 8.14 23.62 8.42 25.67 9.34 34.83 7.99

H3 32.66 8.31 20.50 7.47 19.05 11.06 33.14 8.61

C 18.25 13.21 10.99 11.16 13.82 12.30 15.62 13.81

CA 17.99 14.33 8.31 12.86 12.59 13.07 15.76 14.21

CB 16.58 13.89 9.76 13.08 12.27 13.18 14.34 14.09

CC 19.08 14.14 23.42 10.93 17.90 12.70 24.33 12.82

CK 2.92 18.96 25.19 9.23 33.11 8.59 28.62 10.55

CM 17.42 14.36 8.63 13.24 12.52 13.00 15.15 14.13

CN 31.92 8.17 16.94 10.35 16.46 11.94 19.97 12.40

CQ 30.72 11.33 25.21 9.96 28.64 10.52 27.32 11.90

CR 17.52 14.83 29.87 8.39 19.73 12.24 19.75 13.59

CT 19.19 14.40 10.10 13.56 14.41 13.16 17.03 14.12

CV 31.39 15.17 17.74 14.30 26.76 14.24 30.72 14.84

CW 30.98 14.78 21.54 13.46 34.77 13.83 34.92 14.45

C* 27.02 17.92 20.37 16.76 24.18 16.84 30.54 18.98

N 31.49 28.04 21.97 24.14 32.03 27.76 19.29 18.60

NA 23.37 21.52 33.99 31.66 26.12 23.68 24.36 23.68

NB 34.96 27.25 16.18 18.27 18.51 18.41 26.55 18.41

NC 34.70 28.26 34.94 28.04 28.07 22.74 25.95 22.74

NT 27.71 24.85 27.49 27.36 17.71 17.99 22.60 17.99

N2 32.38 29.27 26.12 26.51 27.02 23.94 33.21 23.94

N3 26.51 22.17 29.87 28.45 33.41 28.57 22.20 28.57

N* 27.30 26.21 25.84 27.13 28.15 25.54 23.70 25.54

O 27.54 23.52 34.81 26.78 29.01 22.98 36.57 22.98

OH 32.26 28.73 35.00 31.41 31.73 26.95 37.39 26.95

OS 22.27 22.26 29.90 28.00 28.80 25.08 29.47 25.08

O2 21.00 20.97 21.86 23.37 17.67 19.13 22.18 19.13

S 23.06 9.68 8.30 11.22 35.00 6.59 25.08 6.59

SH 17.73 12.21 9.72 11.44 11.65 11.61 16.80 11.61

Table 3 The optimized electro-
negativity (#

»
i ) and hardness (h

»
i )

data for AMBER force-field
resolution
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data in our approach. In the case of electronegativity, the
relative values should be compared. Our data are in
qualitative agreement with those of Mortier at. al. [19,
20], Bultinck and coworkers [25], and Koča et al. [27].
Unfortunately, there was no quantitative agreement. This
indicates that optimization is a very complex process and
that many local minima exist on the energy hypersurface
spanned in the variation parameter space. The optimization
also depends on the training set and its size.

Table 2 collects the effective electronegativities and
hardnesses for hybridized-atom resolution. The number of
variation parameters is increased. Two types of hybridiza-
tion (sp2 and sp3) of carbon, nitrogen, and oxygen atoms
were considered. For Ohno and L-V hardness matrices, the
atomic electronegativities are in disjoint domains, thus
preserving the qualitative trends obtained for the trivial
atoms. For 1/R and M-N hardness matrices, the domains of
nitrogen overlap these of oxygen. The overlapping of the
electronegativity and hardness domains is more obvious for
AMBER force-field atoms, as shown in Table 3. This
indicates that the effective electronegativity and hardness
data are strongly dependent on the nearest environment.

To demonstrate the quality of the effective electronega-
tivity and hardness data obtained, the fitness parameters
(S2), the linear correlation coefficients (R2), and the best
linear fits (y=ax+b) between the Mulliken and CSA
charges are compared for all model hardness matrices and
resolutions in Table 4. The first, second and third entries in
Table 4 correspond to trivial-atom, hybridized-atom and
force-field atom resolutions, respectively. It is clear from
the table that at all resolutions the Ohno scheme is the best

while M-N is the worst. The introduction of hybridization
only slightly lowers the fitness parameter and improves the
correlation. More pronounced is the influence of the nearest
chemical neighborhood. The fitness parameter is halved
after moving to AMBER force-field resolution. The data
collected in Table 4 reflect the trends that should be
expected after increasing the number of variation parame-
ters. Namely, the fitness parameter decreases, the correla-
tion coefficient increases and the slope of the fit line (a)
increases and is close to the ideal correlation (a=1). In all
cases, b is very small, a few orders of magnitude smaller
than a. Therefore, we can safely assume that it is equal to
zero. The correlation diagram between the Mulliken and
CSA charges for the Ohno scheme is shown in Fig. 1. One
can see that the correlation is indeed very good.

The data reported in Table 4 may give an impression that
the efficiencies of computational schemes based on different
resolutions and different hardness matrices are almost the
same. To dispel this, histograms where different resolutions
and schemes based on different hardness matrices are
compared have been plotted in Fig. 2. It is evident from
Fig. 2a that the deviation from the reference Mulliken
charges is lessened when new atom types are introduced.
With force-field resolution, the tail beyond 0.15 is reduced.
The remaining two resolutions extend significantly beyond
this value. In Fig. 2b, all computational schemes for force-
field atoms are compared. It is now evident that Ohno’s
interpolation formula gives the smallest deviation from the
reference values. The average absolute deviations (AAD) per
atom type are highest for H (H attached to N), HC (H
attached to C), and CT (aliphatic carbon), and are 0.02, 0.02

Table 4 Parameters characterizing simulations and the parameter-
izations obtained: fitness functions (S2), correlation coefficients (R2)
and linear fits (y=ax+b) between CSA and Mulliken charges

|S2| R2 y= ax+b

Trivial-atom resolution

1/R 6.290 0.9765 y=0.9771x+8×10−5

M-N 9.726 0.9636 y=0.9657x+0.0001

Ohno 5.017 0.9812 y=0.9819x+7×10−5

L-V 5.271 0.9803 y=0.9766x+9×10−5

Hybridized-atom resolution

1/R 5.680 0.9788 y=0.9752x+9×10−5

M-N 9.313 0.9652 y=0.9674x+0.0001

Ohno 4.201 0.9843 y=0.9826x+6×10−5

L-V 4.430 0.9834 y=0.9811x+7×10−5

AMBER force-field resolution

1/R 3.977 0.9852 y=0.9794x+8×10−5

M-N 5.480 0.9795 y=0.9861x+5×10−5

Ohno 2.589 0.9903 y=0.9859x+5×10−5

L-V 3.267 0.9878 y=0.9822x+7×10−5

-1.5
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-0.5
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0.5

1

1.5
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Fig. 1 Correlation diagram between Mulliken [HF/6-31G(d) level of
theory] and CSA charges for the training set of molecules
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and 0.01, respectively. For the remaining atoms, the average
deviation is zero with the assumed accuracy. The
corresponding root mean square deviations (RMSD) per
atom type are 0.03, 0.03 and 0.02, respectively. The full list
of AAD/atom and RMSD/atom data is included in Table 1 of
the ESM. The AAD and RMSD per atom in each molecule
are reported in Table 2 of the ESM. The highest deviations
does not exceed 0.05 (AAD/atom) and 0.07 (RMSD/atom).
A detailed examination of the training set demonstrates that
H, HC and CT atoms are responsible for the deviations from
the reference Mulliken charges.

The data presented in Table 4 and Figs. 1 and 2
correspond to the training set of molecules. To validate
the obtained parameters, we applied CSA to a validation
set. None of the molecules from the validation set were in
the training set. The validation set included completely
new classes of molecules: mono- and disaccharides,
lactams, keto acids, thio acids, thioesters, carbamic acid
and its derivatives, and others. The structures of mole-
cules from the validation set are shown in the ESM. The
correlation obtained and the deviations from the reference
charge distributions are shown in Fig. 3. All calculations
were performed with AMBER resolution and Ohno’s
interpolation formula (hardness matrix). The correlation
coefficient was found to be 0.9762. The distribution
obtained is very close to the reference values. Thus, the
results obtained for the training and validation sets are
close to each other.

The AAD and RMSD per force-field atom and per atom in
eachmolecule of the validation set are summarized in Tables 3
and 4 of the ESM. Except for one molecule from the p-
tertbutylcalix [4] family, the AAD and RMSD are in the
same ranges as those reported for the training set. Actually,
this molecule has the highest number of HC and CT atoms.
The reason for the poor reproduction of Mulliken charges for
these atom types is their low specificity. Namely, the CT
type corresponds to any sp3 carbon, and HC to any hydrogen
attached to carbon. Further partitioning of HC and CT atom
types, as done in CHARMM [42] and recent AMBER [43]
parameterizations, should improve the agreement between
CSA and Mulliken charges. Confirmation of this observation
can be found in Table 3 of the ESM, where AAD and
RMSD values per force-field-atom type are listed for the
Ohno hardness matrix. Just as observed for the training set,
high deviations occur for HC and CT atoms. In addition, a
slight increase in the error is observed for OH and HO force-
field atoms (hydroxyl group). It seems that distinguishing
different aliphatic carbon atoms improves the descriptions of
OH and HO atoms.

In Table 5 we have summarized the results of the
simulation performed to derive CHELPG charges. The data
obtained indicate that the reproduction of charges fitted to
electrostatic potential is not satisfactory. The main
reason for this is that the level of theory used to obtain
CHELPG charges was insufficient. Such charges are very
sensitive to the N-electron wavefunction and possess huge
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statistical inaccuracies. Extension beyond the HF scheme is
probably required to obtain “transferable” CHELPG charges.

Conclusions and future prospects

This article has presented the extension of Charge Sensitivity
Analysis to AMBER force-field resolution. The effective

electronegativity and hardness data were found using evolu-
tionary algorithms. The parameters for trivial-atom and
hybridized-atom resolutions are also reported. The Mulliken
population analysis and charges derived from fitting to the
electrostatic potential (CHELPG) were considered. Four
different hardness matrices were taken into account. The
current parameterization included hydrogen, carbon, nitrogen,
oxygen, and sulfur atoms. For hybridized-atom resolution, sp2

and sp3 states of carbon, nitrogen, and oxygen atoms were
considered. AMBER force-field resolution distinguished 33
different chemical environments of H, C, N, O, and S atoms.
It was demonstrated that the effective electronegativities and
hardnesses depend strongly on the nearest neighborhood.
The reproduction of Mulliken charges by CSA was very
good, with only very small average deviations from the
reference distribution. The best agreement was observed for
Ohno’s interpolation formula. CSA based on Ohno’s formula
gave the narrowest and sharpest distribution around the
reference Mulliken charges. The same observations were
valid for the validation set. Taking into account that the
validation set contained new classes of molecules, none of
which were included in the training set, the obtained
electronegativities and hardnesses would appear to be
reasonable.

CHELPG charges are not as transferable as Mulliken
charges. They show huge statistical inaccuracies that reflect
the quality of the N-electron wavefunction. A post-Hartree–
Fock treatment and a large basis set are probaby required to
obtain “transferable” charges.

Next, we plan to connect force-field CSAwith molecular
dynamics calculations. The first step towards this involves

Table 5 Parameters characterizing simulation and the parameterization
obtained: fitness function (S2), correlation coefficient (R2) and linear fit
(y=ax+b) between the CSA and CHELPG charges

|S2| R2 y=ax+b

Trivial-atom resolution

1/R 51.989 0.8028 y=0.8055x+0.0007

M-N 63.619 0.7587 y=0.7601x+0.0009

Ohno 55.170 0.7908 y=0.7962x+0.0007

L-V 52.937 0.7992 y=0.8012x+0.0007

Hybridized-atom resolution

1/R 46.834 0.8224 y=0.8168x+0.0007

M-N 62.566 0.7627 y=0.763x+0.0009

Ohno 51.912 0.8031 y=0.8085x+0.0007

L-V 47.359 0.8204 y=0.8178x+0.0007

AMBER force-field resolution

1/R 38.472 0.8541 y=0.8578x+0.0005

M-N 51.248 0.7896 y=0.8004x +0.0007

Ohno 42.368 0.8393 y=0.8424x+0.0006

L-V 37.829 0.8565 y=0.8598x+0.0005
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Fig. 3 a–b Correlation between Mulliken [HF/6-31G(d) level of
theory] and CSA charges (a), and histograms of the absolute
differences between the CSA and Mulliken charges (b) for the
validation set of molecules
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checking how the force-field CSA describes mutually
polarized subsystems and the polarization induced by an
external electric field. Other possible applications are
QSAR and QSPR models. The extension of this work to
other elements and population analyses is also planned.
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